Adaptive Mesh Refinement in Computational Astrophysics – Methods and Applications
نویسنده
چکیده
The advent of robust, reliable and accurate higher order Godunov schemes for many of the systems of equations of interest in computational astrophysics has made it important to understand how to solve them in multi-scale fashion. This is so because the physics associated with astrophysical phenomena evolves in multi-scale fashion and we wish to arrive at a multi-scale simulational capability to represent the physics. Because astrophysical systems have magnetic fields, multi-scale magnetohydrodynamics (MHD) is of especial interest. In this paper we first discuss general issues in adaptive mesh refinement (AMR). We then focus on the important issues in carrying out divergence-free AMR-MHD and catalogue the progress we have made in that area. We show that AMR methods lend themselves to easy parallelization. We then discuss applications of the RIEMANN framework for AMR-MHD to problems in computational astophysics.
منابع مشابه
Adaptive Mesh Refinement for Astrophysics Applications with ParalleX
Several applications in astrophysics require adequately resolving many physical and temporal scales which vary over several orders of magnitude. Adaptive mesh refinement techniques address this problem effectively but often result in constrained strong scaling performance. The ParalleX execution model is an experimental execution model that aims to expose new forms of program parallelism and el...
متن کاملGAMER: a GPU-Accelerated Adaptive Mesh Refinement Code for Astrophysics
We present the newly developed code, GAMER (GPU-accelerated Adaptive MEsh Refinement code), which has adopted a novel approach to improve the performance of adaptive mesh refinement (AMR) astrophysical simulations by a large factor with the use of the graphic processing unit (GPU). The AMR implementation is based on a hierarchy of grid patches with an oct-tree data structure. We adopt a three-d...
متن کاملIntroduction to the Slide Modeling Method for the Efficient Solution of Heat Conduction Calculations
Determination of the maximum temperature and its location is the matter of the greatest importance in many technological and scientific engineering applications. In terms of numerical calculations of the heat conduction equation by using uniform mesh increments in space, large computational cost is sometimes countered. However, adaptive grid refinement method could be computationally efficient ...
متن کاملVisualization Tools for Adaptive Mesh Refinement Data
Adaptive Mesh Refinement (AMR) is a highly effective method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations that must accomodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR as a first class data type and AMR code teams use custom built applications for AMR visualization. The Departm...
متن کاملVisualization of Scalar Adaptive Mesh Refinement Data
Adaptive Mesh Refinement (AMR) is a highly effective computation method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations, which must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR grids as a first class data type and AMR code teams use custom built applications for AMR visua...
متن کامل